Atmos. Chem. Phys. Discuss., 6, 9517–9544, 2006 www.atmos-chem-phys-discuss.net/6/9517/2006/ © Author(s) 2006. This work is licensed under a Creative Commons License.

ACPD

6, 9517–9544, 2006

Two-years of NO₃ radical observations

M. Vrekoussis et al.

Two-years of NO₃ radical observations in the boundary layer over the Eastern Mediterranean

M. Vrekoussis¹, N. Mihalopoulos¹, E. Gerasopoulos^{1,*}, M. Kanakidou¹, P. Crutzen², and J. Lelieveld²

 ¹Environmental Chemical Processes Laboratory – Department of Chemistry, University of Crete – P.O. Box 2208, 71003 Voutes, Heraklion, Greece
 ²Max-Planck-Institut für Chemie – Abt. Luftchemie, Mainz, Germany
 ^{*} now at: Institute of Environmental Research and Sustainable Development, National Observatory of Athens, Athens, Greece

Received: 29 June 2006 - Accepted: 5 September 2006 - Published: 28 September 2006

Correspondence to: M. Kanakidou (mariak@chemistry.uoc.gr)

Abstract

This is the first study that investigates the seasonal variability of nitrate (NO₃) radicals in the marine boundary layer over the East Mediterranean Sea. An extensive data set of NO₃ radical observations on the north coast of Crete for more than two years (June

- ⁵ 2001–September 2003) is presented here. NO₃ radicals follow a distinct seasonal dependency with maximum mixing ratios in summer (5.6±1.2 pptv) and minimum in winter (1.2±1.2 pptv). Episodes with high NO₃ mixing ratios have been encountered mainly in polluted air masses originating from mainland Greece, Central and East Europe, and Turkey. Ancillary measurements of ozone, nitrogen dioxide (NO₂) and meteoro-
- ¹⁰ logical parameters have been conducted and used to explain the observed NO₃ variability. The acquired NO₂ nighttime observations provide the up-to-date most complete overview of NO₂ temporal variability in the area. The data show that the NO₃ night-time mixing ratios are primarily dependent on NO₂ (positive correlation) and relative humidity (negative correlation) and to a lesser extend on temperature (positive correlation)
- tion). As inferred from these observations, on average the major sink of NO₃ radicals in the area is the heterogeneous reaction of dinitrogen pentoxide (N₂O₅) on aqueous particles whereas the homogeneous gas phase reactions of NO₃ are most important during spring and summer. NO₃ chemistry in the area significantly contributes to VOC oxidation and to the nighttime formation of peroxy radicals, nitric acid and particulate
 nitrate.

1 Introduction

25

The self-cleaning efficiency of the troposphere is important for air quality, and depends on the oxidation and deposition of trace constituents. The most important oxidants in the atmosphere are the hydroxyl radical (OH) during daytime, the nitrate radical (NO₃) during nighttime, and ozone (O₃) during the entire day. In the presence of nitrogen dioxide (NO₂) and ozone (O₃), NO₃ radicals are mainly formed in the lower troposphere

ACPD 6, 9517-9544, 2006 **Two-years of NO**₃ radical observations M. Vrekoussis et al. **Title Page** Introduction Abstract Conclusions References **Figures** 14 Back Full Screen / Esc **Printer-friendly Version** Interactive Discussion EGU

via Reaction (R1):

$$NO_2 + O_3 \rightarrow NO_3 + O_2$$

During daytime NO₃ radicals do not build up to detectable levels because they have a short lifetime of about 5 s (Orlando et al., 1993) due to the radiation absorption in the visible band of the solar spectrum (maximum absorption at 662 nm) and consequent photodissociation to NO₂ and to a lesser extent NO (R2b).

 $NO_3 + h\nu \rightarrow NO_2 + O(^{3}P) \qquad \lambda_1 < 580 \text{ nm}$ (R2a) $NO_3 + h\nu \rightarrow NO + O_2 \qquad \lambda_2 < 700 \text{ nm}$ (R2b)

Besides its role in the formation of NO_3 radicals, NO_2 also acts as a sink for NO_3 to 10 form N_2O_5 via the equilibrium (3, -3) (Atkinson et al., 2004):

 $NO_3 + NO_2 + M \rightleftharpoons N_2O_5 + M$ (3, -3)

The equilibrium (3, –3) depends strongly on temperature and therefore N₂O₅ can act as a reservoir or as a sink for the nitrogen oxides (NO_x= NO+NO₂ depending on ambient temperature. Gas-phase N₂O₅ might contribute to nitric acid formation via reaction with ¹⁵ water vapor, a process that is probably slow thought uncertain (Wahner et al., 1998; Atkinson et al., 2003). Most importantly, N₂O₅ undergoes heterogeneous reactions with water (and water dimers) on aerosol or/and in clouds to form HNO₃ and nitrate (NO₃⁻) anions, thus leading to a net loss of NO₃ and NO_x. Reported uptake coefficients of N₂O₅ (the ratio of the number of gas molecules removed by the condensed phase divided by the number of gas molecules colliding with the particle) γ_{N2O5} on different aerosol surfaces vary from 2·10⁻⁴ to 0.04 depending on temperature and surface composition with the lowest values observed for aerosols containing organics (Schutze et al., 2002; Zetsch et al., 1992; Hu and Abbatt, 1997; Badger et al., 2006; Brown et al., 2006). The direct hydrolysis of NO₃ radicals is slow with γ_{NO3} equal 4.4·10⁻⁴ at 273 K

 $_{\rm 25}$ (Rudich et al., 1996). In the aqueous phase NO_3 can also react with anions like Cl⁻

9519

rate ents ase rent ome et al., 3 K CI⁻

(R1)

ACPD

6, 9517–9544, 2006

Two-years of NO₃ radical observations M. Vrekoussis et al. **Title Page** Introduction Abstract Conclusions References **Figures** 14 Back Full Screen / Esc **Printer-friendly Version** Interactive Discussion

EGU

to produce NO₃⁻ anions with γ_{NO3} ≥2·10⁻³ at 293 K (Thomas et al., 1998). NO₃ radicals also react rapidly in the gas phase with NO to form NO₂. In polluted areas this reaction might dominate the sink of NO₃ during daytime. At night, NO levels are low, especially in areas far from primary NO_x emissions. This in addition to the absence of light, which dissociates NO₃ radicals, allows the build up of significant NO₃ mixing ratios during night. The NO₃ radicals undergo gas phase reactions with Volatile Organic Compounds (VOCs) (Atkinson, 2000) and form peroxy (RO₂) and hydroxyl (OH) radicals (e.g. Platt et al., 1990; Carslaw et al., 1997 a, b; Salisbury et al., 2001). They also contribute to the conversion and subsequent removal of NO_x to reactive nitrogen (Allan et al., 1999) forming nitric acid (HNO₃) and particulate nitrate (NO₃⁻) during night (Brown et al., 2004; Vrekoussis et al., 2006). Although for most VOCs, the rates of reactions with NO₃ are lower than those with OH (Atkinson et al., 2004), there are

several VOCs that are very reactive towards NO_3 ; for example, dimethylsulfide (DMS), isoprene, monoterpenes, some alkenes and aromatics. NO_3 reactions with VOCs pro-

- ¹⁵ ceed either via H-abstraction, forming HNO₃ (e.g. with aldehydes, higher alkanes and DMS) or NO₃ addition, forming nitrated organic peroxides, which is the case of alkenes and other unsaturated VOCs. During night NO₃ mixing ratios can be 10–100 times higher than of hydroxyl radicals during the day. In these cases NO₃ radicals can be the main atmospheric oxidant for species with similar reactivity towards NO₃ and OH
- radicals (for instance various pinenes, Atkinson et al., 2004). Therefore, atmospheric processes driven by NO₃ radicals, involving both gas phase and heterogeneous chemistry, may be of importance for the oxidizing capacity of the atmosphere and for nutrient nitrate formation. To our knowledge only two studies have addressed the role of NO₃ on a seasonal basis (Heinz et al., 1996; Geyer et al., 2001a). Seasonal NO₃ radi-
- cal measurements are challenging because of the low mixing ratios and high spatial and temporal variability involved. The present study aims to investigate the seasonal variability of NO₃ radicals and the controlling factors in the marine planetary boundary layer over the East Mediterranean Sea. This region attracts attention as it is a cross point of various air masses of different origin. Depending on the wind direction, polluted

air masses with important loading of NO_x and anthropogenic aerosol are alternate with cleaner air originating from the Atlantic Ocean and Sahara, e.g. with low O_3 and significant dust loading (Mihalopoulos et al., 1997; Kouvarakis et al., 2000; Lelieveld et al., 2002).

5 2 Location of the station and experimental setup

Nitrate radicals were measured by a long path differential optical absorption spectroscopy (DOAS) instrument (Platt and Perner, 1983) along a 10.4 km light beam at Finokalia station (35.3' N, 25.3' E) on the island of Crete in the East Mediterranean for more than two years (June 2001-September 2003). The sampling station characteristics and the experimental device used for NO₃ measurements have been described 10 in detail elsewhere (Mihalopoulos et al., 1997; Kouvarakis et al., 2000; Vrekoussis et al., 2004). NO₃ radicals are detected via its two significant absorption bands at 623 and 662 nm in the visible region of the solar spectrum. To eliminate influences such as water bands, NO₂ and lamp structures, the proper reference spectra are fitted simultaneously to derive the NO₃ signal, as described by Martinez et al. (2000) and Vrekoussis 15 et al. (2004). Finally, the optical density of NO_3 is quantified through the 662 nm peak using the absorption cross section reported by Yokelson et al. (1994). The sampling time ranged from 10 to 30 min depending on the visibility through the light path. Note that a single measurement is the average of several individual absorption spectra over

- ²⁰ a long optical path in the atmosphere of 10.4 km, thus reducing the influence of smallscale variability. The detection limit (signal to noise ratio S/N=3) for the NO₃ radicals has been estimated to 1.2±0.3 pptv. Nitrogen dioxide has been measured in parallel with NO₃ by changing the region of the light spectrum and by periodically shifting between the visible (VIS) for NO₃ and the ultraviolet (UV) region for NO₂ detection. NO₂
- $_{25}$ quantification has been achieved by using the optical density of the 405 nm peak and the cross section provided by Yoshino et al. (1997). Unfortunately, the NO₂ data set is not as extended as the NO₃ observations due to the increased noise in the UV region

caused by a malfunction of the Photo Diode Arrays. Only good quality spectra (signal to noise ratio larger than 3) are used for the present analysis. The mean detection limit for NO₂ mixing ratios was 0.18 ± 0.04 ppbv. Short path UV absorption instrument (Dasibi 1008) has been used for the continuous 5 min O₃ measurements during these two years. The instrument has a detection limit equal to 1 ppbv as indicated by the manufacturer. An extensive 5 min O₃ record since 1997 has been reported and analysed by Kouvarakis et al. (2000, 2002) and Gerasopoulos et al. (2005, 2006). The radioisotope Radon-222 has also been measured for this study with a 2-hour sampling time and detection limit better than 1 mBq/m³, and is used as a tracer of continental air masses

(see details in Gerasopoulos et al., 2005). The 5 min mean meteorological parameters (temperature, relative humidity, wind speed and direction and solar irradiance) have been recorded by an automated meteorological station. Local time (LT) is used for the presentation and the discussion of the results hereafter.

3 Results and discussion

 $_{15}$ 3.1 NO₃ variability and impact of transport

Measurements were performed during a total of 392 nights from June 2001 to September 2003. During 336 nights, NO₃ radical mixing ratios were above the detection limit of 1.2 pptv (Fig. 1) and in 8 cases exceeded 100 pptv. The maximum observed NO₃ value was 139 pptv (June 2001) and the 2-year period nighttime average was 4.2±2.3 pptv (arithmetic average±standard deviation). As shown in Table 1, the average NO₃ observations compare fairly well with data reported earlier for various locations and similar time periods. In addition, the maximum NO₃ values of 100 pptv in the continental boundary layer and 98 pptv in the marine boundary layer reported by Brown et al. (2003) and Heintz et al. (1996), respectively, are by 40% lower than those observed at Finokalia during summer. Since O₃ and NO₂ are precursors to NO₃ radical formation (R1), examination of their levels and variability is essential for understanding the chem-

istry of NO₃. Figures 2a–c show the monthly mean (and maximum) nighttime mixing ratios of NO₃ radicals, NO₂ and O₃, observed during the studied period. NO₃ radical levels are high in spring (seasonal average 3.7 ± 0.9 pptv) and summer (5.6 ± 1.2 pptv) and low during winter (1.2 ± 1.2 pptv) and follow those of its precursors, NO₂ and O₃.

- ⁵ The NO₂ data series acquired with the DOAS instrument and presented here (Fig. 2b) provides the most complete overview of NO₂ temporal variability at a coastal area in the Eastern Mediterranean since only few NO₂ measurements have been reported in the literature for the area (Kourtidis et al., 2002; Vrekoussis et al., 2004). The annual mean NO₂ mixing ratio is 0.31±0.13 ppbv whereas the individual NO₂ measurements
- ¹⁰ range from below the detection limit (0.18 ppbv) up to 5 ppbv. The lowest monthly average of 0.24 ppbv was observed in winter and the highest (about 0.60 ppbv) in spring and summer. Similarly to NO₂ and NO₃, O₃ minimum levels were registered in winter (seasonal average value equals 37 ± 6 ppbv) while the highest levels were observed in late spring-mid summer (summer seasonal average of 56 ± 10 ppbv) (Fig. 2c). For
- ¹⁵ the studied 2-year period, the annual mean mixing ratio of O₃ is 48 ± 9 ppbv with the 5 min observations ranging from 23 ppbv to 83 ppbv. Details on the seasonal variation of O₃ at Finokalia are given by Gerasopoulos et al. (2005). The impact of the air mass origin on the levels of NO₃ radicals and other chemical species of interest for the present study has been investigated for the 2-year period. The rose diagrams
- shown in Figs. 3a–f have been constructed by averaging within each 10 degrees of wind direction interval all data acquired during the 2-years of the study. They have to be interpreted in conjunction with the various source areas that surround Finokalia station, notably mainland Greece, central Europe (N, NW), east Europe, Turkey (NE, E), Italy and the western Mediterranean region (W), and Africa (SW, S, SE). Note also
- that during winter air originates mainly from the Atlantic region and during summer from polluted Europe and Turkey (Lelieveld et al., 2002). The wind speed and Radon (Fig. 3a, b) highest values were associated with the northwest sector, indicative of air mass transport from polluted continental areas. High levels of ozone (Fig. 3c) were observed for wind directions from the north-west (Greece and central Europe) and north

ACPD 6, 9517-9544, 2006 **Two-years of NO**₃ radical observations M. Vrekoussis et al. **Title Page** Introduction Abstract Conclusions References **Figures** 14 Back Full Screen / Esc **Printer-friendly Version** Interactive Discussion EGU

to north-east (east Europe, Turkey). NO₂ (Fig. 3d) was also slightly enhanced when the air masses originate from the northwest sector, compared to southerlies. As shown in Fig. 2e, NO₃ radicals were 50% higher when the air masses are of north-westerly origin in comparison to all other source regions. This dependency of the NO₃ mixing ⁵ ratios on the wind direction has been further analysed for all NO₃ levels exceeding 30 pptv (in total 32 cases) during the period June 2001–September 2003 (Fig. 1). Back trajectories of the air masses reaching the sampling location, calculated by the HYS-PLIT program (http://www.arl.noaa.gov/ready/hysplit4.html), are used to characterise the origin of these peaks. A high percentage (90%) of these elevated NO₃ cases is re-lated to air masses from the northwest-northeast sectors, while the remaining 10% has a local-mixed origin. For these 32 cases, the observed NO₃ radical mixing ratios per wind sector average 64±37 pptv (northwest), 50±38 pptv (north), 55±24 pptv (northeast) and 48±13 pptv (local and mixed). To examine the importance of the individual

- chemical and meteorological factors for NO_3 radicals in detail, two characteristic cases of high NO_3 levels have been selected. Each of the 32 high NO_3 episodes observed during this study can be classified within one of these two categories (12 in case one and 20 in case two shown below).
 - 3.1.1 Intrusion into the boundary layer

During the night of 4–5 June 2002 a rapid increase in NO_3 levels has been observed from 3 pptv to 102 pptv within 2.5 h (Fig. 4). Shortly before the NO_3 increase, the relative humidity dropped from 75 to 55%, Radon declined by about 0.8 B qm⁻³ while ozone and NO_2 increased by about 7 ppbv and 0.2 ppbv, respectively. These observations support an intrusion event during which dry air from the free troposphere subsided into the nocturnal marine boundary layer, as identified by the trajectory analysis

(Fig. 4). The air masses originated from polluted continental areas in Central Europe. The enhanced NO₃ radical mixing ratios in the free tropospheric subsiding air masses, may result from the high levels of NO₃ precursors in conjunction with depressed NO₃

losses, in particular via the N_2O_5 reaction with water vapour.

3.1.2 Transport from pollution sources

During the night of 11–12th May 2003 NO₃ radicals mixing ratio increased from 4 pptv to 104 pptv within less than 1.5 h (Fig. 5). This rise was associated with the progressive increase in wind speed and changes in the wind direction. The back trajectory analysis reveals that these air masses had crossed the south-west coast of Turkey before reaching the sampling station. Note that under these conditions the station is receiving air masses rich in NO₂ and Radon. The relative humidity in this case did not change but remained at rather low levels (20–30%); in parallel the temperature was almost conto stant decreasing by only 1°C throughout the night. The clear anti-correlation observed between O₃ and NO₂ indicates titration of O₃ by NO leading to NO₃ production. Therefore, in contrast to the earlier case when air was transported in the free troposphere and then penetrated into the boundary layer at Finokalia, in this case the air mass

originated from the polluted boundary layer and was transported at lower altitudes.

15 3.2 Correlations between NO₃ radicals and related species

Single and multiple regression analyses have been deployed to investigate the specific role of each of the factors that control the levels of NO₃ radicals such as NO₂, O₃, Radon-222, temperature (T), relative humidity (RH), wind direction and wind speed. The analysis is confined only to nighttime hours during which NO₃ radical mixing ratios exceed the detection limit. Specifically, more than 11 000 data points were used for the following analyses. A moving average has been additionally applied to the data series in order to subtract the seasonality (where existed) thus removing possible covariance between variables, which is due to their seasonal dependence.

ACPD 6, 9517-9544, 2006 **Two-years of NO**₃ radical observations M. Vrekoussis et al. **Title Page** Introduction Abstract Conclusions References **Figures** Tables 14 ►T. Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion EGU

3.2.1 Single regression analysis

Linear regression analysis has been performed using both original and deseasonalised data. Significant correlations with NO₃ radicals at the 99% confidence level are apparent with O₃ (R²=0.13, N=9845), NO₂ (R²=0.21, N=8008), temperature (R²=0.26,

N=9737), relative humidity (R^2 =-0.18, N=9737) and wind speed (R^2 =0.10, N=9737). When deseasonalised ozone and temperature values are used, their correlation coefficients are lower (0.08 and 0.17 respectively). This corroborates that a significant part of both O₃ and temperature correlation with NO₃ radicals is due to their common seasonality. Therefore, the single regression analysis indicates NO₂ (positive correlation) and RH (negative correlation) as the most important factors controlling NO₃ levels.

3.2.2 Multiple regression analysis

To evaluate the relative importance of each parameter for the NO₃ mixing ratios a multiple regression analysis has been performed. Based on the single regression analysis results, NO₂, O₃, T, RH and wind speed have been chosen as individual variableparameters. Among them, O_3 and wind speed have been rejected by the model at 15 the 95% confidence level (alpha=0.05). This result is not surprising since as shown by Gerasopoulos et al. (2005) a large part of ozone variability in the area can be explained by nitrogen oxides, RH and T changes and therefore O₃ can not be considered as an independent parameter. The analysis has been repeated with NO₂, RH and T, after eliminating the extreme values. These outliers have been identified via residual analy-20 sis between the predicted and initial NO₃ values with the criterion of the ± 2 sigma. The best linear correlation that expresses the NO₃ variability is:

 $NO_3 = (0.80 \pm 0.04) \cdot NO_2 + (0.17 \pm 0.01) \cdot T + (-0.037 \pm 0.004) \cdot RH + (3.1 \pm 0.4)$ (R3)

where NO₃ in ppty, NO₂ in ppby, T in $^{\circ}$ C and RH in $^{\circ}$. The predictors in this case, NO₂, T, RH, contribute relative to 8, 7 and 5, respectively, and the explained total variance 25 is 12%. This value is significant taking into account the total number of data used 9526

(N=8217). The results of both single and multiple regression analyses show that the NO₃ radicals are very sensitive to changes in NO₂ and in relative humidity and, to a lesser extent to temperature variations. Relative humidity is the only parameter anticorrelated with NO₃ due to the indirect removal via heterogeneous reactions of N₂O₅, as will be discussed below.

3.3 Factors controlling NO₃ levels

Under steady state conditions the NO₃ levels are in equilibrium between production (P_{NO3}) and losses (f_{NO3}). The production rate of NO₃ radicals by Reaction R1 is given by:

¹⁰ $P_{NO_3} = k_{NO_2+O_3} \cdot [NO_2][O_3]$

where $k_{NO_2+O_3}$ is the rate of this reaction. The losses of NO₃ radicals (f_{NO3}) are the sum of direct (f_A) and indirect loss rates (f_B). The indirect losses of NO₃ (f_B) are related to the loss of N₂O₅ (f_B ') as shown below in Eq. (3) that is derived assuming steady-state conditions for N₂O₅, NO₃ (Geyer et al. 2001b):

$$[NO_3] = \frac{P_{NO_3}}{f_A + [NO_2] \cdot k_{eq} \cdot f'_B}$$

where

15

20

$$k_{eq} = \frac{k_{NO2+NO3}}{k_{-(N2O5)}} = \frac{[N_2O_5]}{[NO_2] \cdot [NO_3]}$$

The N₂O₅ levels can be calculated based on the observed NO₃ and NO₂ levels, and the temperature dependent equilibrium constant k_{eq} of the reversible Reaction 3,–3. For the whole sampling period monthly averages for N₂O₅, P_{NO3}, and f_{NO3} are shown in Fig. 6.

EGU

(R4)

(R5)

(R6)

If the indirect losses are negligible ($f_B \approx 0$), (NO₃) should be directly proportional to the P_{NO3} and, then, the slope of the linear relationship between (NO₃) and P_{NO3} equals the lifetime of NO₃ radicals (τ_{NO3}) and is f_A^{-1} . On the other hand, if the direct losses are negligible ($f_A \approx 0$) and the indirect NO₃ loss predominates, the above equation leads to

$$\tau_{\rm NO_3} = \frac{1}{[\rm NO_2] \cdot k_{\rm eq} \cdot f_{\rm B}'}$$
(R7)

Then τ_{NO3} is proportional to the inverse of the NO₂ mixing ratio (or ln(τ_{NO3}) =-ln(k_{eq} f_B [NO₂]).

Below the production and loss rates of NO₃ will be examined in detail.

3.3.1 Production rate of the NO₃

5

Based on Eq. (2) and the temperature dependence of the reaction rate 10 $k_{\text{NO}_2+\text{O}_3} = 1.4 \cdot 10^{-13} \exp \left[-\frac{2490}{\text{T}}\right]$ (T in K; Atkinson et al., 2004), under typical conditions in the Mediterranean area during summer (NO₂=0.5 ppbv, and (O₃)=50 ppbv, T=298 K), the production rate of NO_3 (P_{NO_3}) equals 72 pptv NO_3 per hour. Assuming dynamic equilibrium of NO₃ (i.e. that the production by Reaction R1 equals the loss by photo-dissociation (R2a) and (R2b) and reaction with NO, for (NO)=0.02 ppbv and $k_{\text{NO}_3+\text{NO}} = 1.8 \cdot 10^{-11} \cdot \exp\left[\frac{110}{\text{T}}\right] = 2.6 \cdot 10^{11}$, the steady-state daytime concentration of NO₃ is calculated to be about 0.1 pptv. Maximum temperature differences of 40°C that have been observed between summer and winter can change P_{NO3} by a factor of 3.5 (higher P_{NO3} during summer) assuming that the levels of NO₂ and O₃ do not change significantly. However, the monthly mean temperatures differ by about 14°C 20 between summer and winter (Vrekoussis et al., 2006). In addition, NO₂ and O₃ mixing ratios are higher during summer than during winter. Thus, the overall effect is that the nitrate radical production (P_{NO3}) is about 4 times faster during summer than during winter. The annual mean P_{NO3} derived from the monthly averages equals (2.6±1.4) 10^5

molecules cm⁻³s⁻¹ (Fig. 6). Note that P_{NO3} calculated over the 5 min sampling time shows two orders of magnitude variability, ranging from 5.0·10⁴ molecules·cm⁻³s⁻¹ to 5.5·10⁶ molecules·cm⁻³s⁻¹.

3.3.2 Losses of NO₃

⁵ Direct removal of NO₃ concerns the NO₃ reactions mainly with VOC, including DMS naturally emitted by the ocean, and with peroxy (RO₂) radicals. The indirect removal of NO₃ occurs via N₂O₅ formation and subsequent heterogeneous reactions.

For the following analysis, to reduce the high scatter in the NO₃ data set (more than 15 000 measurements), NO₃ averages have been further extracted per unit of P_{NO3} equal to 1.10^5 molecules cm⁻³s⁻¹ and τ_{NO3} (equal to $1/f_{NO3}$) has been averaged per unit of NO₂ equal to 100 pptv. The interpretation of all data, according to the above analysis for the direct sinks, leads to a linear regression

 $[NO_3]=300 P_{NO3} (r^2=0.41)$

whereas the derived equation for the indirect sinks is:

¹⁵ $\ln(\tau_{NO3}) = -1.02 \ln[NO_2] + 4.6 (r^2 = 0.93)$

The above indicate relatively strong indirect losses in this region during the 2-years period.

However there is also significant seasonal variability in the importance of the direct versus the indirect NO_3 loss pathways as indicated by the seasonally resolved corre-

²⁰ lations (Table 2). During winter the direct sinks of NO₃ radicals are of little importance whereas during spring the data reveal a strong linear correlation (r^2 =0.96) between NO₃ radicals and their production rate, most probably due to increased VOC concentrations from biogenic emissions, indicating dominance of direct NO₃ losses.

For summer and autumn, a closer examination of the dataset reveals two sub-sets. ²⁵ For both seasons, the one sub-set corresponds to a higher linear regression slope and

(R8)

(R9)

a significant correlation between P_{NO3} and NO₃, whereas the second one does not present any significant correlation between P_{NO3} and NO₃ (Table 2). The first one, with a high production rate P_{NO3} and high NO₃ mixing ratios, corresponds to steady-state conditions in the area where the direct sinks of NO₃ are important. The second subset is linked to high P_{NO3}, high NO₂ and low NO₃ mixing ratios pointing to indirect sinks for the NO₃ radicals.

To further investigate the importance of the heterogeneous chemistry in NO₃ removal via the reactions of N_2O_5 , the logarithmic correlation between the NO₃ lifetime and the NO₂ concentration is considered for 7 different ranges of relative humidity from 20 to 90% every 10% (Fig. 7). It is found that the slope approaches the "ideal" value of -1 at high relative humidity, which explains why heterogeneous processes peak in winter.

3.4 Implications of the observations

Based on our observations, during nighttime the annual median steady-state NO₃ lifetime is estimated to be about 5 min. During daytime NO₃ is rapidly destroyed via photodissociation and can be involved in O₃ titration through Reaction R2b that contributes by about 10% to the total photodissociation of NO₃. Thus based on the range of the P_{NO3} estimated in Sect. 3.3.1, Reaction R2b could provide a sink of up to 70 pptv O₃ per hour that is at most 10% of the calculated tropospheric ozone destruction in the

area (Gerasopoulos et al., 2006).

10

- Taking into account the observed levels of NO₃ radicals, several VOC species are subject to important nighttime chemistry initiated by NO₃, i.e. of similar relevance as daytime chemistry driven by OH radicals (Vrekoussis et al., 2004). Indeed, for the studied area, based on the observed NO₃ levels and the OH radicals observed during summer 2001 (Berresheim et al., 2003) and calculated for the other seasons (Vrek-
- oussis et al., 2006), the NO₃ initiated nighttime VOC oxidation appears to be more important than the daytime oxidation by OH radicals for a number of VOCs, particularly for monoterpenes and DMS. VOC oxidation can lower NO₃ levels and shorten NO₃ lifetime. These results agree with recent observations of a positive NO₃ radical vertical

gradient in the mid-latitude coastal marine boundary layer during summer (Saiz-Lopez et al., 2006). These authors have explained their observations by a potentially efficient removal of NO_3 radicals by DMS.

In addition, the NO₃ initiated oxidation of VOCs contributes to the nighttime formation of OH and peroxy radicals (Platt et al., 1990; Vrekoussis et al. 2006, in preparation) Finally, our results underscore that nighttime chemistry initiated by NO₃ radicals is as important as daytime chemistry for the formation of nutrient, nitrate as discussed in detail by Vrekoussis et al. (2006).

4 Conclusions

20

This paper presents the first long-term NO₃ radical observations performed by a DOAS instrument in the marine boundary layer in the eastern Mediterranean region for a two-year period. The observed nighttime NO₃ levels vary between the detection limit of the instrument (about 1.2 pptv) and 139 pptv with seasonal averages that have a maximum in summer (5.6±1.2 pptv) and a minimum in winter (1.2±1.2 pptv); and an annual mean
 value of 4.2±2.3 pptv.

Single and multiple component regression analyses on the large number of simultaneous observations (n=8217) demonstrate NO_2 (positive correlation) and relative humidity (negative correlation) as the most important factors controlling NO_3 levels, and to a lesser extend temperature that is strongly linked to the seasonal variation of NO_3 levels.

Further data analysis points to the indirect loss of NO₃ via conversion to N₂O₅, followed by heterogeneous reactions as the major loss process for NO₃ year-around. Direct losses of NO₃ are shown to be important in spring and some summer and autumn periods with high biogenic emissions. Our results also indicate that NO₃ radicals can be important for nighttime VOC oxidation, contributing to the nighttime formation

ACPD 6, 9517-9544, 2006 **Two-years of NO**₃ radical observations M. Vrekoussis et al. **Title Page** Abstract Introduction Conclusions References **Figures** Back Full Screen / Esc **Printer-friendly Version** Interactive Discussion EGU

Acknowledgements. The authors acknowledge valuable help with the DOAS instrument logistics by D. Perner and T. Kluepfel. MV has been supported by a PENED grant. Presentation of the work has been facilitated by the ACCENT EU Network of Excellence. At its latest stage this project has been supported by European Social Funds and National Resources EPEAK

⁵ II-PYTHAGORAS. This paper is dedicated to the memory of G. Hönninger from the University of Heidelberg, who performed the first DOAS measurements at Finokalia station during the ELCID campaign (June 2000).

References

Allan, B. J., Carslaw, N., Coe, H., Burgess, R., and Plane, J. M. C.: Observations of the Nitrate Radical in the marine boundary layer, J. Atmos. Chem., 33, 129–154, 1999.

- Radical in the marine boundary layer, J. Atmos. Chem., 33, 129–154, 1999.
 Allan, B. J., Mc Figgans, G., Plane, J. M. C., Coe, H., and Mc Fadyen, G. G.: The nitrate radical in the remote marine boundary layer, J. Geophys. Res., 105, D19, 24 191–24 204, 2000.
 Atkinson, R.: Atmospheric chemistry of VOCs and NOx, Atmos. Environ., 34(12–14), 2063–2101, 2000.
- Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N, Hampson, R. F., Kerr, J. A., Rossi, M. J., and Troe, J.: IUPAC recommendations, Web version, http://www.iupac-kinetic.ch.cam.ac.uk, 2003.

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric

- ²⁰ chemistry: Volume I gas phase reactions of O_x , HO_x , NO_x and SO_x species, Atmos. Chem. Phys., 4, 1461–1738, 2004.
 - Badger, C. L., Griffiths, P. T., George, I., Abbatt, J. P. D., and Cox, R. A.: Reactive uptake of N₂O₅ by aerosol particles containing mixtures of humic acid and ammonium sulphate, J. Physical Chemistry A, 110 (21), 6986–6994, 2006.
- ²⁵ Berresheim, H., Plass-Dülmer, C., Elste, T., Mihalopoulos, N., and Rohrer, F.: OH in the coastal boundary layer of Crete during MINOS: Measurements and relationship with ozone photolysis, Atmos. Chem. Phys., 3, 639–649, http://www.atmos-chem-phys.org/acp/3/639/, 2003. Brown, S. S., Stark, H., Ryerson, T. B., Williams, E. J., Nicks Jr., D. K., Trainer, M., Fehsenfeld,

F. C., and Ravishankara, A. R.: Nitrogen oxides in the nocturnal boundary layer: Simulta-

Back

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

neous in situ measurements of NO₃, N₂ O₅, NO₂, NO, and O₃, J. Geophys. Res., 108(D9), 4299, doi:10.1029/2002JD002917, 2003.

- Brown, S. S., Dibb, J. E., Stark, H., Aldener, M., Vozella, M., Whitlow, S., Williams, E. J., Lerner, B. M., Jakoubek, R., Middlebrook, A. M, DeGouw, J. A., Warneke, C., Goldan, P. D., Kuster,
- W. C., Angevine, W. M., Sueper, D. T., Quinn P. K., Bates, T. S., Meagher, J. F., Fehsenfeld,
 F. C, and Ravishankara, A. R.: Nighttime removal of NO_x in the summer marine boundary layer, Geophys. Res. Lett., 31, doi: 10.1029/2004GL019412, 2004.

Brown, S. S., Ryerson, T. B., Wollny, A. G., Brock, C. A., Peltier, R., Sullivan, A. P., Weber R. J., Dube W. P., Trainer, M., Meagher, J. F., Fehsenfeld, F. C., and Ravishankara, A. R.:

- Variability in nocturnal nitrogen oxide processing and its role in regional air quality, Science, 311 (5757), 67–70, 2006.
 - Carslaw, N., Plane, J. M. C., Coe, H., and Cuevas, E.: Observation of the nitrate radical in the free troposphere, J. Geophys. Res., 102, D9, 10613–10622, 1997a.

Carslaw, N., Carpenter, L. J., Plane, J. M. C., Allan, B. J., Burgress, R. A., Clemitshaw, K. C.,

- ¹⁵ Coe, H., Penkett, S. A.: Simultaneous observations of nitrate and peroxy radicals in the marine boundary layer, J. Geophys. Res., 102(D15), 18917–18934, doi: 10.1029/97JD00399, 1997b.
 - Gerasopoulos, E., Kouvarakis, G., Vrekoussis, M., Kanakidou, M., and Mihalopoulos, N.: Ozone variability in the marine boundary layer of the Eastern Mediterranean based on 7-

year observations, J. Geophys. Res., 110, D15309, doi:10.1029/2005JD005991, 2005. Gerasopoulos, E., Kouvarakis, G., Vrekoussis, M., Donoussis, Ch., Mihalopoulos, N., and Kanakidou, M.: Photochemical ozone production in the Eastern Mediterranean, Atmos. Environ., 40, 3057–3069, 2006.

Geyer, A., Ackermann, R., Dubois, R., Lohrmann, B., Muller, T., and Platt, U.: Long term

- observation of Nitrate radicals in the continental layer near Berlin, Atmos. Environ. 35, 3619– 3631, 2001a.
 - Geyer, A., Alicke, B., Konrad, S., Schmitz, T., Stutz, J., and Platt, U.: Chemistry and oxidation capacity of the nitrate radical in the continental boundary layer near Berlin, J. Geophysical Research, 106(D8), 8013–8025, 2001b.
- ³⁰ Heintz, F., Platt, U., Flentje, H., and Dubois, R.: Long term observation of Nitrate radicals at the Tor Stations, Kap Arkona (Rügen), J. Geophys. Res., 101(D17), 22891–22910, 1996.
 - Hu, J. H. and Abbatt, J. P. D.: Reaction Probabilities for N₂O₅ hydrolysis on sulfuric acid and ammonium sulphate aerosols at room temperatures, J. Phys. Chem., 101(5), 871–878, 1997.

AC	ACPD				
6, 9517–9	6, 9517–9544, 2006				
Two-year radical ob	Two-years of NO ₃ radical observations				
M. Vrekou	M. Vrekoussis et al.				
Title	Title Page				
Abstract	Abstract Introduction				
Conclusions	Conclusions References				
Tables	Tables Figures				
I	I4 FI				
•	•				
Back	Back Close				
Full Scre	Full Screen / Esc				
Printer-friendly Version					
Interactive Discussion					
EGU					

- Kourtidis, K., Zerefos, C., Rapsomanikis, S., Simeonov, V., Balis, D., Perros, P. E., Thompson, A. M., Witte, J., Calpini, B., Sharobiem, W. M., Papayannis, A., Mihalopoulos, N., and Drakou, R.: Regional levels of ozone in the troposphere over eastern Mediterranean, J. Geophys. Res., 107 (D18), doi:10.1029/2000JD000140, 8140, 2002.
- Kouvarakis, G., Tsigaridis, K., Kanakidou, M., and Mihalopoulos, N.: Temporal variations of surface regional background ozone over Crete Island in the southeast Mediterranean, J. Geophys. Res., 105 (D4), 4399–4407, 2000.
 - Kouvarakis, G., Vrekoussis, M., Mihalopoulos, N., Kourtidis, K., Rappenglueck, B., Gerasopoulos, E., and Zerefos, C.: Spatial and temporal variability of tropospheric ozone (O-3) in the
- boundary layer above the Aegean Sea (eastern Mediterranean), J. Geophys. Res.-Atmos., 107(D18), doi: 10.1029/2000JD000081, 8137, 2002.
 - Lelieveld, J., Berresheim, H., Borrmann, S., Crutzen, P. J., Dentener, F. J., Fischer, H., Feichter, J., Flatau, P. J., Heland, J., Holzinger, R., Korrmann, R., Lawrence, M. G., Levin, Z., Markowicz, K. M., Mihalopoulos, N., Minikin, A., Ramanathan, V., de Reus, M., Roelofs, G-J.,
- Scheeren, H. A., Sciare, J., Schlager, H., Schultz, M., Siegmund, P., Steil, B., Stephanou, EG., Stier, P., Traub, M., Warneke, C., Williams, J., Ziereis, H.: Global air pollution crossroads over the Mediterranean, Science, 298(5594), 794–799, 2002.
 - Martinez, M., Perner, D., Hackenthal, E., Kultzer, S., and Schultz, L.: NO₃ at Helgoland during the NORDEX campaign in October 1996, J. Geophys. Res., 105(D18), 22685–22695, 2000.

20

25

Mihalopoulos, N., Stephanou, E., Kanakidou, M., Pilitsidis, S., and Bousquet, P.: Tropospheric aerosol ionic composition in the Eastern Mediterranean region, Tellus B, 49(3), 314–326, 1997.

Orlando, J. J., Tyndall, G. S., Moortgat, G. K., and Calvert, J. G.: Quantum Yields For NO₃ Photolysis Between 570 and 635 nm, J. Phys. Chem., 97(42), 10 996–11 000, 1993.

- Platt, U. and Perner, D.: Measurements of atmospheric trace gases by long path differential uv/visible absorption spectroscopy, in: Optical and Laser remote Sensing, 39, edited by: Killinger, D. K and Mooradian, A., Springer Ser., Optical Sci., pp 95–105, 1983.
 Platt, U., Lebras, G., Poulet, G., Burrows, J. P., and Moortgat, G.: Peroxy-Radicals From Night-
- time Reaction Of NO₃ With Organic-Compounds, Nature, 348(6297), 147–149, 1990.
 - Rudich, Y., Talukdar, R. K., Ravishankara, A. R.: Reactive uptake of NO₃ on pure water and ionic solutions, J. Geophys. Res.-Atmos., 101(D15), 21 023–21 031, 1996.
 Saiz-Lopez A., Shillito, J. A., Coe, H., and Plane, J. M. C.: Measurements and modelling of I₂.

AC	PD			
6, 9517–9	6, 9517–9544, 2006			
Two-years of NO ₃ radical observations M. Vrekoussis et al.				
Title Page				
Abstract Introduction				
Conclusions References				
Tables	Figures			
14	I4 FI			
•	•			
Back Close				
Full Scre	Full Screen / Esc			
Printer-friendly Version				
Interactive Discussion				
EGU				

IO, OIO, BrO and NO_3 in the mid-latitude marine boundary layer, Atmos. Chem. Phys., 6, 1513–1528, 2006.

- Salisbury, G., Rickard, A. R., Monks, P. S., Allan, B. J., Bauguitte, S., Penkett, S. A., Carslaw, N., Lewis, A. C., Creasey, D. J., Heard, D. E., Jacobs, P. J., and Lee, J. D.: Production of
- ⁵ peroxy radicals at night via reactions of ozone and the nitrate radical in the marine boundary layer, J. Geophys. Res.-Atmos., 106(D12), 12669–12687, 2001.
 - Sander, S. P., Friedl R. R., Ravishankara, A. R., Golden, D. M., Kolb, C. E., Kurylo, M. J., Huie, R. E., Orkin, V. L., Molina, M. J., Moortgat, G. K., and Finlayson-Pitts, B. J.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 14, JPL Publication 02-25, NASA, 2003.
- JPL Publication 02-25, NASA, 2003. Schutze, M. and Herrmann, H.: Determination of phase transfer parameters for the uptake of HNO₃, N₂O₅ and O₃ on single aqueous drops Phys. Chem. Chem. Phys., 4(1), 60–67, 2002.

Thomas, K., Volz-Thomas, A., Mihelcic, D., Smit, H. G. J., and Kley, D.: On the exchange of

- ¹⁵ NO₃ radicals with aqueous solutions: Solubility and sticking coefficient, J. Atmos. Chem., 29(1), 17–43, 1998.
 - Vrekoussis, M., Kanakidou, M., Mihalopoulos, N., Crutzen, P. J., Lelieveld, J., Perner, D., Berresheim, H., and Baboukas, E.: Role of the NO₃ radicals in the oxidation processes in the eastern Mediterranean troposphere during the MINOS campaign, Atmos. Chem. Phys., 4, 169–182, 2004.
 - Vrekoussis, M., Liakakou, H., Mihalopoulos, N., Kanakidou, M., Crutzen, P. J., and Lelieveld, J.: Formation of HNO₃ and NO₃⁻ in the anthropogenically-influenced eastern Mediterranean marine boundary layer, Geophys. Res. Letter, 33, L05811, doi:10.1029/ 2005GL025069, 2006.

20

- Wahner, A., Mentel, T. F., and Sohn, M.: Gas-phase reaction of N₂O₅ with water vapor: Importance of heterogeneous hydrolysis of N₂O₅ and surface desorption of HNO₃ in a large teflon chamber, Geophys. Res. Lett., 25(12), 2169–2172, 1998.
 - Yokelson, R. J., Burkholder, J. B., Fox, R. W., Talukdar, R. K., and Ravisankara, A. R.: Temperature dependence of the NO₃ radical, J. Phys. Chem. 98, 13144–13150, 1994.
- Yoshino, K., Esmond., J. R., and Parkinson, W. H.: High resolution absorption cross section measurements of NO₂ in the UV and VIS region, Chem. Phys., 221, 169–174, 1997.
 Zetsch, C. and Behnke, W. : Heterogeneous photochemical sources of atomic Cl in the atmosphere, Ber. Bunsenges. Phys. Chem., 96, 488–493, 1992.

ACPD					
6, 9517–9	6, 9517–9544, 2006				
Two-year radical ob	Two-years of NO ₃ radical observations				
M. Vrekou	M. Vrekoussis et al.				
Title Page					
Abstract	Abstract Introduction				
Conclusions	References				
Tables Figures					
14	I4 ►I				
•	•				
Back	Back Close				
Full Screen / Esc					
Printer-friendly Version					
Interactive Discussion					

EGU

Table 1. NO_3 radical measurements for different environments and seasons reported in the literature. L: total path of the used DOAS instrument.

		NO ₃	NO_3	L			
Location	Latitude-	Average	Max	(km)	Time/Season	Year	Ref
	Longitude	(pptv)	(pptv)				
Continental Boundary Layer							
Lindenberg, Germany 52°13'N-14°07'E		4.6	85	10	FebSept.	1998	Geyer et al. (2001a)
	5.0	-	10	March-April	1998	"	
	5.7	-	10	May-Sept.	1998	"	
Pabstthum, Germany	52°51'N-12°56'E	-	70	12.6	July-Aug.	1998	"
Boulder, Colorando,US	40°6'N- 105°16'W	-	100	-	OctNov.	2001	Brown et al. (2003)
		М	arine Bou	indary L	Layer		
Kap Arkona (Rügen Island), Germany	54°30'N-13°30'E	7.8	98	7.3	April 1993- May 1994	1993/94	Heintz et al. (1996)
Izana, Tenerife,	28º40'N-16º05'W	8.0	20	9.6	May	1994	Carslaw et al. (1997a)
Spain (2005m)	20 4014-10 05 W	-	20	9.3	June/July	1997	Allan et al. (2000)
	52°57'N- 1°08'E	9.7 SP*	-	5	Winter (4 nights)	1994	Allan et al. (1999)
Wayborne, 52° England		10.0	25	5	Spring (4 nights)	1994	Carslaw et al. (1997b)
		6 CL*	-	5	Summer (4 nights)	1995	Allan et al. (1999)
		11.1	-	5	Autumn (1 night)	1994	Carslaw et al. (1997b)
Mace Head,	53° 19'N-9°54'W	1-5 CL* 1-40 SP*	40	8.4	July/August	1996	Allan et al. (2000)
Ireland	1-5 CL* 1-40 SP*	40	8.4	April/May	1997	idem	
		3 CL* 13 SP*	25	8.4	July/August	2005	Saiz –Lopez et al. (2006)
Helgoland, island	54 °2'N-7°9'E		40	3.6	October	1996	Martinez et al. (2000)
		4.5	37	10.4	July/August	2001	Vrekoussis et al. (2004)
		5.6	139.3	10.4	Summer	2001	This work
		3.4	64.1	10.4	Autumn	2001	"
		1.0	6.0	10.4	Winter	2002	"
Finokalia,	[2.9	75.2	10.4	Spring	2002	"
Greece	35°30'N-25°7'E	5.3	119.2	10.4	Summer	2002	"
		4.7	31.5	10.4	Autumn	2002	"
		2.2	11.1	10.4	Winter	2003	"
		5.1	101.4	10.4	Spring	2003	"
		7.2	127.7	10.4	Summer	2003	"
		7.8	62.9	10.4	September	2003	"
* CL:	=Clean condition	ns: SP=9	Semi-polli	uted	conditions: P	=Polluted	conditions

ACPD 6, 9517-9544, 2006 Two-years of NO₃ radical observations M. Vrekoussis et al. Title Page Abstract Introduction Conclusions References Tables Figures 14 ◀ ►

Back Close
Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

9536

Table 2. Indicators of direct (a) and indirect (b) NO₃ losses and corresponding lifetimes (τ_A and τ_B , respectively). (a) Linear correlation of the NO₃ radicals mixing ratio with the NO₃ production rate (P_{NO3}), and (b) linear correlation of the logarithm of the NO₃ lifetime (τ_{NO3}) with the logarithm of the NO₂ mixing ratio. The linear slope of the direct sinks represents the NO₃ lifetime, $\tau_A \tau_B$ is calculated from the seasonal (or annual) NO₂ values and the corresponding logarithmic equation presented in the table. NO₃ values are expressed in molecules cm⁻³, P_{NO3} in molecules cm⁻³s⁻¹, NO₂ in ppbv, τ_{NO3} in s.

ACPD

6, 9517–9544, 2006

Two-years of NO₃ radical observations

M. Vrekoussis et al.

Title Page					
Abstract	Introduction				
Conclusions	References				
Tables	Figures				
14	►I				
•	•				
Back	Close				
Full Screen / Esc					
Printer-friendly Version					
Interactive Discussion					
FGU					

Period	$[NO_3] = f(P_{NO3})$ Slope (r^2)	$ au_{A}(min)$	$ln[\tau_{NO3}] = f(ln[NO_2])$ y=ax+b(r ²)	τ _B (min)
Year	300*(0.41)	5.0	y= −1.0 x + 4.6 (0.93)	5.4
Winter	174 (0.08)	2.9	y=-1.5 x + 2.8 (0.78)	2.3
Spring	520 (0.96)	8.6	y =-0.8 x + 5.1 (0.38)	7.5
Summer	203 (0.10*)	3.4	y =-1.1 x + 4.9 (0.88)	6.1
Summer_1	321 (0.99)	5.4	y=-0.6 x + 5.5 (0.95)	7.1
Summer_2	106 (0.10)	1.8	y=-1.2 x + 4.9 (0.78)	6.7
Autumn	200 (0.25)	3.3	y=-1.4 x + 3.3 (0.92)	2.3
Autumn_1	649 (0.75)	10.8	y=-0.8 x + 4.6 (0.97)	4.2
Autumn_2	128 (0.35)	2.1	y=-1.6 x + 3.7 (0.94)	4.4

*experimentally deduced see text.

ACPD

6, 9517–9544, 2006

Two-years of NO₃ radical observations

M. Vrekoussis et al.

Maximum values (right axis) Monthly mean values (left axis) 2002 2003 a) 2001 12 150 NO3 (pptv) 8 100NO (pptv) 50 b) 1.2 (vddd) NO_{2} 0.8 (vddd) NO_{2} 040.0 c) 90 (vddd) 60 õ 60 (vddd) ٠ ၀ိ 30 30 ſ Jul-01 Aug-01 Sep-01 Nov-01 Jun-02 Jun-02 Jun-02 Jun-02 Jun-02 Jun-02 Jun-03 Apr-02 Sep-03 Apr-02 Jun-03 Jun-03 Jun-03 Jun-03 Sep-03 Sep-03 Sep-03 Sep-03

Fig. 2. Monthly mean mixing ratios (left axis) of **(a)** NO_3 , **(b)** NO_2 and **(c)** O_3 and their standard deviations (nighttime observations only). Black squares, circles and triangles depict the maximum values per month (right axis) of NO_3 , NO_2 and O_3 respectively.

6, 9517–9544, 2006 Two-years of NO₃ radical observations

ACPD

M. Vrekoussis et al.

Fig. 3. Rose diagrams of the **(a)** Wind speed, **(b)** radon-222, **(c)** O_3 , **(d)** NO_2 and **(e)** NO_3 as a function of wind direction at Finokalia, based on all nighttime observations integrated per 10 degree intervals of wind direction.

ACPD 6, 9517-9544, 2006 **Two-years of NO**₃ radical observations M. Vrekoussis et al. **Title Page** Abstract Introduction Conclusions References **Tables** Figures .∎. Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion EGU

Fig. 4. Variation of wind speed, temperature, O_3 and NO_3 radicals during an intrusion of free tropospheric air masses associated with a decrease in Radon and relative humidity and increases of O_3 and NO_3 radicals (time expressed in local time), and 5-day back trajectories of air masses arriving at Finokalia on the 4th of June 2002 at 21:00 LT and on the 5th of June 2002 at 03:00 LT.

Fig. 5. Variation of wind speed, temperature, O_3 and NO_3 radicals during transport of polluted air masses as indicated by an increase in Radon, and wind speed, change in wind direction followed by an increase in NO_2 and depletion of O_3 , an increase in NO_3 radicals (time expressed in local time) and 5-day back trajectories of air masses arriving at Finokalia on the 11th of May 2003 at 22:00 LT and on the 12th of May 2003 at 04:00 LT.

ACPD

6, 9517–9544, 2006

Two-years of NO₃ radical observations

M. Vrekoussis et al.

Fig. 6. Annual cycle (**a**) of observed NO₃ and of N₂O₅ (left axis) calculated assuming steadystate conditions and no heterogeneous losses and of the equilibrium constant K_{eq} of the Reactions (3,-3) (right axis) given by $k_{eq} = 3 \cdot 10^{-27} \exp(10990/T)$ (Sander et al., 2003) (**b**) of P_{NO3} (left axis) and f_{NO3} (right axis); monthly mean values and standard deviations based on the June 2001 to September 2003 observations.

